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An asymptotic analysis of the problem of igniting a homogeneous condensed 
combustible mixture by a flat, cylindrical, or spherical heated body is carried 
out here with allowance for temperature variation of the body during the pro- 

cess of igniting. An asymptotic solution defining temperature distribution in 

the region occupied by the condensed medium from the initial instant of time 

to that of ignition is obtained. The law of temperature variation of the igniting 
body is determined. A firing criterion that relates basic physicochemical para- 

meters of the problem is derived on the assumption that ignition takes place 
when during the heat exchange between the igniter and the reacting mixture 
the igniter is converted from a source to a sink. 

The problem of igniting a combustible mixture by an incandescent body is one of the 
classic problems of the theory of combustion ( *) . Various aspects of this problem were 
theoretically investigated in [l - 33. 

1. Statement of the problem. On the usual simplifying assumptions the 
process of igniting a condensed medium capable of isothermal chemical transformation 

by an incandescent flat, cylindrical, or spherical body can be defined by the following 

system of equations : 

(rt-l%) + p2kQ exp (- &) , r*> 4, (1.1) 

T, (fl,, t) = T, (R,, t), T, (00, t,J = T_, T, (F*, 0) = T_ 

P*=R,,' 
TI = T&z), T,(O) = T, 

where t, is the time, r.+ the space coordinate, and K,, the characteristic dimension of 
the heated body ; T, (t) is the inert body temperature, T2 (r*, t*) is the reacting me- 
dium temperature, n = 1,2,3 relate to the flat, cylindrical, spherical cases, respectiv- 

ely ; Ai, pi and Ci are the thermal conductivity, density, and specific heat of the inert 
body (i = 1) and of the condensed phase (i = 2), respectively ; k is the preexpo- 
nential factor, Q is the thermal effect, and T,” and T are initial temperatures of the 
inert body and of the condensed medium, respectively, with T,’ > T_. 

Equation (1.1) defines the heat balance of the inert body. If the thermal diffusivity 
& / plcr is fairly high, the temperature distribution in the body is uniform, and T, (r*, 
t,,J L- T, (Q 

*) A. G. Merzhanov and A. E. Averson, Present state of the heat theory of igniting. Moscow, 
Preprint, Inst. Khim. Fiziki, Akad. Nauk SSSR, 1970. Combustion and Flame, Vol. 16, N” 1, 
1971. 
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Problem (1.1) expressed in dimensionless variables is of the form 

ae -- I a 
at= p-1 ar ( ) P-1 -f$ + 6 exp Brco’) (1.2) 

e (I, t) = 0, (a c)(oo, q=o-&- da = Y($g_’ a(O)=1 

t, L R,2Pzcztfhz, r* = R,,r, $ = EIRT, 

8= Ta--- T_ 
T,-T_ ’ ‘= T,--T_ ’ 

Tl-T- a-- 

T,-T- 

Y= 
wv2 6= P&Q&? 
7%’ hn V+ - T-1 

e-b 

where a (t) and 8 (r, t) are unknown functions that are to be determined in the course 

of solving the problem, and the assumption of uniform igniter temperature is taken into 
account. 

We shall analyze problem (1.2) on the assumption of high activation energies of the 

chemical reaction (J3 > I), and that parameters y and o are of the order of unity. 
As the instant of ignition we take the instant of time at which the inert body is converted 

from a heat source to a sink by the initiation of the chemical reaction in the condensed 

medium. To be able to ignite the Inert body must, obviously, have a sufficient heat ca- 
pacity. 

If the igniter heat capacity is low, its temperature drops too quickly and ignition does 

not take place. On the other hand, when its heat capacity is very high, the temperature 

decrease and the heat losses up to the instant of ignition are small, and the problem is 
then virtually the same as that of igniting a condensed phase by an incandescent wall at 

constant temperature (*) . Because of this the solution of the considered problem com- 
prises the estimation of parameter 6 (p) which depends on the heat storage capacity of 

the inert body, as well as the determination of the critical value of 6. 

2. S 0 1~ t i o n. Let us represent the solution of problem (1.2) in the form of the sum 

8 = Q, (r, t) + 24 (r, t) . (2.1) 
aa, 
at= 

LL(m-1%) 
p-1 ar (2.2) 

@ (1, t) = a (t), CD (00, t) = 0, 0 (r, 0) * 0 

Using the Laplace transformation we obtain 

a* (PI ,-Gr-i) 
r 

-a*(f/p+l), n=3 

@*(r, P)= a*p = 2(Lv;y , 

1 

m* 
( 1 

- = ar 
t=l 

I 

a* j/r/p Kl (VP) n=2 
0 hz7iTv 

a*(p)e-Gr-0 
-a*VE n=l co 

a* (r, p) = p s e-p’@ (r, t) dt 
0 

*) V. S. Berman, Certain problems of the theory of spreading of the zone with isothermal 
and chemical reactions in gaseous and condensed media. Candidates dissertation, Moscow, 
1974, Inst. Problem Mekhaniki, Akad. Nauk SSSR, 
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where K. and K, are Macdonald functions of order zero and unity, respectively. 
In ~onformi~ with (2.1) for u (r, t) from (1.2), we obtain 

(2.3) 

To analyze the problem we separate in the region 1 ,( r < 00 the boundary layer at 
the surface of the inert body, and introduce in that layer the variables :C = (r - I)$ (p), 
where Ip (@) > 1. 

In the dimensionless variables used here the time of ignition is considerably smaller 
than unity, hence we can substitute the new variable. z = t cp (p) and 0 @) > 1. 

We seek a solution of the form 

a (t) = 1 + /3-r a, (z) + . . . , u (2, t) ==: p-‘ul +... 

Analysis shows that the solution which corresponds to ignition is that when 9s * cpg2, 
+I = p2, 9p = fi%, 6 * 6$, &-, L- 0 (1). Substituting a (t) and u (z, t) into (2.3) 
we obtain 

da1 -zzz y 
dr 

(2.4) 

(2.5) 

The general solution of Eq. (2.4) is of the form 

By satisfying bounds conditions at x = 0 and x = 00 we obtain 

ch2cI (z) = J&-l exp - ( *)csW* c*(x) = 2$+oJr 

The temperature gradient at the igniter surface F = 1 (5 = 0) is 

(2.7) 

This shows that the heat fIux vanishes when the expression in brackets is zero. At that 
instant the inert body changes from a heat surrce to a sink (the instant of ignition). 

with allowance for (2. ‘7) from (2.5) we obtain 
adi 

dr= - y(nr)-qi - 2s (1 + a) &z exp &+J’* , at (0) = 0 (2.8) 

Passing to new variables, instead of (2. B) we obtain 

dy/df = evl - $e-r’, y(o)=o, y),o (2.9) 

ai = --Y(i +a)> 
ti12 

Z=2Jc(i+a)6@ * e=+ v- 
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The form of solution (2.9) depends on parameter e . If e is fairly great, it exists in the 
whole of the interval 0 & E & 00, while for fairly small e it obtains only in a finite 

interval of time variation, which corresponds to ignition. The critical value e = e* , 
determined by numerical integration, is e * = 1.138. It follows from this that ignition 
takes place when R, > R,,*, while for Rs < Ro”’ ignition does not occur and 

It is obvious that the indicated criterion is valid in the case of asymptotic behavior 

of solution in which the inert body temperature variation during ignition is substantial, 

as well as that in which this variation is negligible. 
The obtained formulas determine the temperature distribution in the inner zone, the 

igniter temperature variation, and the critical conditions of ignition. For defining tem- 
perature variation throughout the condensed medium zone R,-, < f < oo these formu- 

las must be supplemented by the temperature distribution in the outer z%ne u = @-lUi, 

where function U, is the solution of the following linear problem: 

au&k = 8sU1/BXs, x = (r - 1) /-j 

v,(O,z)=u,(a:-too,z)=f(z), U,(X,O)=U(oo,r)=O 

U,(X,z)=” = f 6’) s C X2 
2v/n: o (+_rf)% exp - 4(z- ‘c’) 1 dz’ 

As an example, let us consider igniting nitromethane by a flat copper rod. In this case 
the phi&o-chemical properties are as follows [4]: 

p1 = 8.939g+cm-*; ci = 9.154.10~’ cal .g-l.‘K-l; pa = 1.1286 ,g.cm-J; 

c, = 4.153.10-1 Cal- g . 'K-2; hl = 5, to-’ cal *cm-‘* seC”°K-l; 

Q = 1.1t3*1O-s tale g-1; 'k = 3.98.1~14 WC -1; ,h' = 5.36.10’ ca]. mole-‘-‘K-i. 

The initial temperature of nitromethane is T_ = 300” K. The dependence of the cri- 
tical dimension of the igniter (half-width of rod) on the initial temperature T+ is shown 

in Fig. 1. The region above the curve corresponds to ignition. The critical dimension 

of a cylindrical or spherical igniter can be 

obtained from Fig. 1 by simple calculation. 
Note that in the considered case the so- 

lution of the problem implies that the di- 
mensions of the zone with chemical heat 
release are considerably smaller than the 

dimensions of the igniter so that the prob- 

2 3 W’xT’K lem in the inner zone is plane, and the ig- 
niter shape manifests itself only by the 
presence in formulas of the factor n which 
is equal to the ratio of the igniter area to 
its volume. 

-u 
Fig. 1 

The above analysis is based on the as- 
sumption that y = 0 (I), which corre- 
sponds to typical values of thermophysical 
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properties of the igniter and condensed medium, A similar analysis may be carried out 
on a more general assumption as regards parameter y. If y = y0 a (fi) with y. = 0 
(I), the igniter temperature variation is substantial for o (p) o-2 (b) p-s = 0 (1). 
In that case the variables in the inner zone are to be of the form z = (r - 1) CZ~? and 
‘G = to2b2 , and for o satisfying the inequality up2 > 1, the solution is determined by 

the derived here formulas in which 6 / a2 f13 and y / a are to be substituted for 6, 

and y ,respectively. If, however, a = B-2 th e problem reduces to the solution of an 
equation in which the differential operator retains the form determined by the problem 

symmetry. 
We note in conclusion that the problem of igniting a reacting gas by a heated body 

with allowance for the cooling of the igniter and the burnout of reagent can be treated 
by the method developed here. In that case the problem reduces to the integration of 

two nonlinear integral equations for the igniter temperature and concentration of rea- 

gent at its surface. 
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The representation of the displacement gradient of an isotropic elastic body is 
analyzed. It is shown on the basis of a single controlling inequality and a polar 
expansion of the Viola tensor that such representation has generally four bran- 
ches. The mechanical meaning and the nature of that ambiguity is explained. 
Itisestablished that when the angles of turn of material fibers are not excessiv- 
ely large, only one of the four branches is obtained. Particular cases in which 
the nature of ambiguity is more complex are investigated. It is noted that in 
many practical problems the representation of the displacement gradient by the 
Piola stress tensor is unambiguous. 


